
Theoret. chim. Acta (Berl.) 29, 21--28 (1973) 
�9 by Springer-Verlag 1973 

Study of Reaction Mechanisms 
by Semiempirical Methods. I. 

O p t i m i z a t i o n  o f  the  G e o m e t r y  o f  the  M o l e c u l e  in the  F r a m e w o r k  o f  a 
S ingle  C a l c u l a t i o n  o f  the  E n e r g y  F u n c t i o n  

J. Pancff  

The J. Heyrovsk3~ Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of 
Sciences, Prague, Czechoslovakia 

Received September 8, 1972 

The author suggests a procedure offering the possibility to determine, with the use of a double 
iteration technique, the equilibrium geometry within the framework of a single calculation of the 
energy function. The method is used for the ground state and the lowest excited singlet state of formalde- 
hyde and for the formyl radical. The individual contributions of the potential energy are discussed in 
brief. 

Der Autor schlggt ein Verfahren vor, das erlaubt, mittels einer Doppeliterationstechnik die 
Gleichgewicbtsgeometrie im Laufe einer einzigen Berechnung der Energiefunktion zu bestimmen. Das 
Verfahren wird auf den Grund- und den ersten angeregten Zustand von Formaldehyd und auf das 
Formylradikal angewendet. Die einzelnen Beitriige zur potentiellen Energie werden kurz diskutiert. 

L'auteur propose une m6thode par laquelle il est possible de d6terminer par une technique iterative 
double la g6ometrie d'6quilibre dans le cadre d'un seul c~ilcul de la fonction 6nerg6tique. On a appliqu6 
la m~thode pour l'6tat fondamental et l'6tat excit6 le plus bas singulet de formald6hyde et pour HCO. 
On discute brevement les contributions singulaires de l'6nergie potentielle. 

Introduction 

Semiempirical methods  working with all valency electrons [1 -5 ]  were suc- 
cessfully employed for determining the equil ibrium geometry  of  molecules [3-7] .  
The usual procedure  in such calculations, i.e., the determinat ion of  the shape of  
the energetic hyper-surface, however, is fairly costly and not  feasible for molecules 
with more  than four independent  coordinates.  The number  of the necessary 
calculations of the energy function was considerably reduced by the procedure of  
McIver  and Komorn ick i  [8], who by means of  a quadrat ical ly convergent  variable 
metric method  minimized the total energy of a molecule obtained with the use of  
E H T  and M I N D O / 2  programs  [1, 5]. 

In the present paper  we have suggested a procedure,  which by means of double 
iteration technique permits the equil ibrium geometry  in the f ramework of a single 
calculation of  the energy function to be determined. We have applied this proce- 
dure also to the C N D O / 2  me thod  [6], of which it is known [9, 10] that it affords 
a better agreement  between the theoretical and the experimental equilibrium 
geometries than that  obtained by the method  ment ioned earlier. We extended the 
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procedure to the case of excited states (half-electron method [11]) and to radicals 
(method of Longuet-Higgins and Pople [12]). Although we have tested the 
procedure on calculations of equilibrium geometries, our main interest is con- 
cerned with questions of the reactivity of small molecules and of principal func- 
tional groups. To this theme we shall pay our attention in the following papers. 

Theoretical Procedure 

Among numerical methods used for finding a stationary point of the given 
function, the most efficient are those which utilize the properties of the gradient 
[13, 14]. The calculation of the gradient requires a knowledge of the derivative 
of the overall energy of the molecule with respect to the x-th Cartesian coordinate 
n~A of the atom A. For the ground singlet state and the CNDO/2 method we can 
derive the relation 

8 E  ~A[ ~RAB1 (PAAZB + PBI IZA- -PAAPBB)~]  
~FIxA "~- B Z A Z B  ~FlxA 

(1) 

+ 2 2 A s 2P,,v ~3nxA 2 Puv ~?n~Al 
B:~A /~ 

where RAn and ?AB denote the distance and the bicentric repulsion integral between 
the atoms A and B; Z A and Pan stand for the "core" charge and the electron 
density on the atom A; P.~ and//u~ denote the bond order and the resonance 
integral between the atomic orbitals # and v localized on the atoms A and B. For 
an open shell system we can use the formula 

0E - D-0 .5  ~ ~A •B_2 _2 0TAB 
~nxA ~ c.,~,Cs~ ~n~A (2) B ~ A  /~ v 

where D is the right hand side of Eq. (1), and %. denotes the expansion coefficient 
of the #-th AO in the singly occupied MO (marked with m). 

The derivative of the energy change in the excitation of the electron from the 
level i to j is described by the equation 

gE B 2 2 = 0 - 0 . 5  Z 2 " 2  2 - - -  q- C j# Ci v 
~3n~A S*A . ~ (3) 

_ 2ciu cJu ci~ cJv + 4cit ' Cju civ c jr) ~TAB 
- -  OnxA 

where the upper sign holds for a singlet state and the lower for a triplet state. 
For the INDO method, Eqs. (1)-(3) apply without any change. For the MINDO/2 
method different formulas are used [5] for electronic and core-core repulsion 
integrals. These formulas are very easy to differentiate and are not presented here. 

From the Eqs. (1)-(3) and from the proportionality of the resonance and the 
overlap integral [2-4] in the methods employed it is obvious that the main 
problem lies in the determination of the derivatives of the overlap and the repulsion 
integral with respect to the Cartesian coordinates. The overlap integrals were 
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differentiated in a similar way as in Ref. [8] with the use of the formulas of Gerratt 
and Mills [15]. Since the practical determination of these derivatives and in 
particular the necessary transformation of the coordinates are very laborious, we 
give the resultant formulas in Appendix A of this paper. The repulsion integrals 
were differentiated directly with the use of the corresponding explicit formulas; 
the results are given in Appendix B. It was found that for practical calculations, 
where we do not demand an accuracy of the determined coordinates higher than 
about 10 -2 ~, it is sufficient to differentiate the repulsion integrals numerically. 

In order to study the reactivity, it was indispensable to carry out the minimiza- 
tion in spherical coordinates. The calculation of the geometries of nonequilibrium 
configurations of the molecule, arising in the formation or in the disappearance 
of the chemical bond, was performed by means of the fixation of one or more 
spherical coordinates. This procedure will be described in more detail in the 
following paper. 

The minimization itself was carried out by the variable metric minimization 
method according to Murtagh and Sargent [-14], the necessary formulas for it 
were taken from Ref. [8]. The calculation began with the conventional CNDO/2 
method, which was continued until the average difference in the orbital energies 
in two successive iterations did not exceed 0.1 eV. Thereupon, the variable metric 
method was employed as long as the coordinates of the molecule did not change 
by more than 2.10 -4 ~. The control was returned to the CNDO/2 program and 
the criterion of convergence was halved. The procedure was repeated as long as 
the average error in the calculation of the orbital energies was larger than 10 -4 eV. 
The attainment of self-consistency required about double the number of iterations 
as were necessary in the case of the simple CNDO/2 calculation. This applies also 
with the MINDO/2 method. 

The program was written in FORTRAN IV for IBM 7040 and IBM 370/155 
computers. 

Results and Discussion 

The usefulness of the method was tested on the formaldehyde molecule. 
Table 1 presents the results for two different assumed initial geometries in com- 
parison with the calculations by the INDO method [7] and with the experiment 
[16]. The "exact" equilibrium geometries in both calculations are in agreement 
with an error of about _+0.0005 A in the bond lengths and of 0.4 ~ in the values of the 
angles. For the sake of comparison the values obtained by the numerical dif- 
ferentiation of repulsion integrals are also presented. It can be noticed that the 
error is sufficiently small for the study of reaction paths. It was found that already 
after the first application of the variable metric method, the change in the geometry 
amounted to 80-90 % of the total change; it is obvious, therefore, that the geometry 
of the molecule depends rather on the values of the two-centre atomic integrals 
than on the density matrix. In this way it is possible to explain, e.g., why the 
CNDO/2 method and the INDO method give so similar estimates of the bond 
lengths and of the angles. 

It is interesting to consider in more detail the CNDO/2 energy contributions 
of the individual bonds in the equilibrium configuration in the molecule. These 
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T a b l e  1. G e o m e t r y  of  f o r m a l d e h y d e  H 1 H 2 C = O  in a g r o u n d  s ta te  

M e t h o d  r cm rca2 rco  ~gn,cn2 gn2co ~a E n e r g y  (eV) 

1. In i t ia l  0.99 1.00 1.4 90 ~ 135 ~ 10~ ' - -  

C N D O / 2  1.114 1.114 1.247 115~ , 122~ ' 0~ ' - 7 3 0 . 2 8 7  
C N D O / 2  b 1.102 1.102 1.234 115020 ' 122020 ' 0 ~ 16' - 730.261 

M I N D O / 2  1.220 1.220 1.204 108~ ' 126 ~ 0020 ' - 4 7 2 . 1 1 2  

2. Ini t ia l  0 ,939 1.090 1,238 172~ ' 132~ ' 0 ~ - -  
C N D O / 2  1.114 1.114 1.247 115~ ' 122~ ' 0 ~ - 7 3 0 , 2 8 7  
1 N D O  c 1.12 1.12 1.25 115 ~ 122030 ' 0 ~ - -  

exp. a 1,116 1.116 1,208 116~ ' 121040 ' 0 ~ - -  

a (180 - ~) is the  ang le  w h i c h  b o n d  C = O  m a k e s  w i th  the  b i s ec to r  of  H 1 - C - H  2. 
b N u m e r i c a l  d i f fe ren t ia t ion  o f  r e p u l s i o n  in teg ra l s  was  used.  

Ref. 17]. 
d Ref. 1,-16]. 

T a b l e  2. G e o m e t r y  o f  f o rmy l  r ad i ca l  

M e t h o d  r cn  rco ,gHC o E n e r g y  (eV) 

Ini t ia l  1.2 1.2 120 ~ - -  

C N D O / 2  1.129 1.223 130~ ' - 7 0 4 . 3 4 5  
C N D O / 2  a 1.106 1.204 130~ , - 7 0 4 . 3 2 6  
M I N D O / 2  1.230 1.175 139o30 , - 4 5 5 . 3 5 3  
I N D O  b 1.11 1.22 131010 , - -  
Exp.  c 1.148 1.177 123020 ' - -  

a N u m e r i c a l  d i f fe ren t i a t ion  o f  r e p u l s i o n  in teg ra l s  was  used.  
b Ref. [7 ] .  
c Ref. [17] .  

contributions can be roughly divided into resonance energy, electrostatic attractive 
(core-electron), and repulsive energy (core-core and electron-electron). The 
attractive and the repulsive contributions ( -522  and + 525 eV at the C = O  bond) 
are by an order higher than the resonance energy ( - 4 8  eV), but they almost 
compensate each other, so that the overall energy of the bond is, in principle, the 
resonance energy. The attractive and the repulsive forces, too, compensate each 
other to a considerable extent (323 and -375 eV/A for the C = O  bond), the 
contribution of the resonance force is somewhat more significant (53 eV/A). The 
forces of electrostatic character are inversely proportional to the square of the 
distance of the atoms; the bond angles are given, in principle by the resonance 
forces. Consequently it becomes understandable that the extended Hiickel method, 
which neglects the electron repulsion, gives so good estimates of the bond angles. 

For testing the open shell minimization procedure we selected the radical 
HCO. The initial and the final geometries as well as the experimental data are 
listed in Table 2. 

It is known that formaldehyde is non-planar in the first excited singlet state 
[18], whereas the virtual orbital calculation predicts a planar configuration of the 
atoms [19]. 

Our calculations (Table 3) favored the non-planar arrangement of the atoms, 
in this case the theoretical geometry being in somewhat poorer accordance with 
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Table 3. Geometry of formaldehyde in excited singlet state 

25 

Method rcH rco ~HCH r Energy (eV) 

Initial 0.99 1.4 120 ~ 39o30 ' - -  
CNDO/2 1.131 1.287 109~ ' 37o35 ' -726.498 
Exp. b 1.093 1.323 119 ~ 31 ~ - -  

a (180 - 4) is the angle which bond C=O makes with the bisector of HI--C-H2. 
b Ref. [19]. 

exper imenta l  da t a  than  for the  g r o u n d  state. The  ca lcu la ted  d ipo le  m o m e n t  is, 
however ,  in a g o o d  ag reemen t  with the exper imenta l  one (theor. 1.67 D, exp. 1.56 D, 
cf., Ref. 1-20]). The M I N D O / 2  app l i ed  to the exci ted s tate  of  fo rma ldehyde  failed 
bad ly  for the  reac t ion  H 2 C O ~ H  2 + C O  was p red ic ted  to occur  wi thou t  any  
energy barr ier .  I t  is n o t e w o r t h y  tha t  in the unres t r ic ted  H a r t r e e - F o c k  C N D O / 2  
ca lcu la t ion  the  energy m i n i m u m  of  the  exci ted s tate  of  fo rma ldehyde  per ta ins  to 
the p l ana r  molecule  (cf., Fig.  2, Ref. [21]). 

Acknowledgement. The author should like to express his thanks to Mr. K. Magek for checking of 
the formulas given in this paper and to Prof. P. O. Lbwdin for making use of the computing facility. 

Appendix A 

Master formulas of the derivatives of the overlap integrals. (Differentiated is always the first 
member of the pair of the Slater orbitals in the brackets, the differentiation is carried out with respect 
to the z coordinate. The derivatives with respect to the Cartesian coordinates x and y can be easily 
ascertained by cyclic interchange of the axes of the coordinate system.) 

(~( l s )  ] ls)  =-(k/ | /3)cos~p(lp~lls) ,  0~-I 

(~(ls) I \ 

( ~ z  s) 2Pr)=-(k/l/3)cosq)simpcos~p[(lpxl2px)+(lp~12pz)], 

(O(2s) [Is) 

"14 
~z J 

= k cos ~p [(1/3) ( lp~[ ls)  - (1/ l~)  (2pz[Is)] ,  

= (k/V5) ~/3 sin~o simp cos~0 <2dz2 [ is>,  

= (k/l/5) V3 cos ~0 sin~o cos~p <2d=21 ls>, 

= - k <  lsl ls> + (k/l/3) <2sl ls> + (k/l/i5) (3 cos2w - 1) <2dz21 ls>, 
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( O(~s z) 2s) =kcosw[(1/3)(lp=[2s)-(1/1/~)(2p.[2s)], 

{O(~ 2px)=ksinq)sintpcos~p[(1/3)((lpxliP~)+ (lpzl2p~)) 

- (1/1/3) ((2p~12px) + (2p=12p.>)], 

/ ~ z  s) 2pr ) =kcos~osinvgcos~p[(1/3)((lpxl2p:)+ (lp,12p,)) 

- (1/]/3) (2pxl2p:,) + (2p,12p=))l, 

( O(~s z ) 2p=)=(k/3)(cos=~p(lp=12p=)-sinZ,p(lp,:L2p~,>) 
- (k/l/3) (cos21p (2p=] 2p=) - sin2w (2p,,I 2p,,)), 

t? (2px) 12s; = (k/l/5) 1/3 sin~o sin*p cos ~p (2dz=12s), 
O z t /  

( O(2p~) 12p~') = -(k/l/5)cos,v r (1-  2sin z~o sin~)(2d=12p~> 
~z I / 

- [ /3 sina ~o sin2w (2d~d2p~)], 

O(2px) 12 \ = (k/V~) sin~o cos~o sinZ~p cos*p(2(2d,~=[2px) + I/g<ea=~12p~>), 

( ~  2P~) =(k/~/~)sin~~176 
+ ]/~ cosZlp (2d==12p=)], 

( O(2p~,) [2s;  = (k/l/~5) 1/5 cos q9 sin lp cos*p < 2d~= 12s), 
O z l /  

( ~  2P'~) =(k/[//~)sintpc~176 

(O(2py) 12py; = - (k / l /5 )  cos*p[(1 - 2 sin2q~ sin2*p) (2d~12p:,) 
Oz I / 

+ If3 cos2 ~o sin2*p (2d~12p~)], 

( d(2p~,) 12p~ = (k/~5) coso simp [(cos2tp - sin2~o) (2d=12p~) Oz I I 
+ V ~ cos2~p (2d.= [2p.)] ,  

/ O(2P~) [2s; = 
a z  I / 

O(2p=) [2px; = 
Oz / / 

( a(2p~) 12 \ 

( O(2pz) 12p ; = • [ =1 

- k ( l s l2s )  + (kill3) (2s12s> + (k/V~) (3 cos2~p - 1) (2d=d2s>, 

- k  sin ~0 sintp [(lsl2p~) - (1/V~) (2st2pz)] 

+ (2k/~i5) sin ~o sin lp [~3  cos21p (2d=12px) 

+(1/2) (3 cos2~p - 1) (2d~212pz)], 

- k  cosq~ sin~p [(lsl2pz) - (1/]/~) (2sl2p=)] 

+ (2k/l//~) cos ~o simp I l l3  cosZ~p (2d=12px) 

+ (1/2) (3 cos z ~p - 1) (2d~212p~)], 

- k cos*p [(lsl2p~) - (1/~3) (2s12p~>] 

- (2k/1/15) cos~ I l l3  sinaw (2d,,zl 2p~,) - (1/2) 

�9 (3cosZ~ - 1) (2a==12p~) ] 
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where k is the Slater exponent of the differentiated orbital, the Euler angles are defined as follows 
(the differentiated orbital has the coordinates xl, yl, z0: 

AX . r 
sinq~ = - - , r  slmp = ~ - ,  r2=Ax2+Ay 2 ' 

R2=r2 + zJz 2 
Ay dz 

cosq~=- - , r  c o s l ; = ~ - ,  Ax = x 1-  x 2 

Ay=yl -Y2 
~Z=Z 1 --Z 2 . 

Appendix B 

Differentiation of the bicentric repulsion integrals with respect to the Cartesian coordinates 

~'AB 27.20974 G xA -- xB 
~XA d 

Case 1 : s = 

11 3s2dZ 1 3 3 \ 1 G(ls, l s ) = l { - l + e - 2 S d [ ( l + ~ - s d +  + ~ s d ) ( ~ + 2 s )  

11 3 1 ]} - - - s - - - s 2 d  - sad 2 
8 2 

G(ls, 2s)= l~l -  ( d ~sd+25 8 sod9 z + ~23 $3d3 

+ ~s4d4+ sSd5 1 25 9 23s3d2 ~- +2s - - - s -  --sZd T M  

16 4 16 

t s4d3 @2 sSd41} 
2 

1 G(2s, 2s)=d{_~+e_Z~a[(1 + 419 1 6 3 2 2  1 1 9 3 3  ~ s d +  ~ s  d +~9~s  d 

+ 5~4 s d + 4 * ~ s S d 5 +  l~S6d6+_l160 sTd7)(d+2S) 

419 163 163 119 5 1 s 4 
---s---sZd-256 64 64 sZd- 64 s3d 2-  s4d 3 - ~ - s  d 

1 1 ]} _ __s6d s _ sVd 6 
20 180 " 

Case 2: s # a 

G(Is, Is)=~d { -  l~+rtZe-Zsa[2+4+sd ( ~ + 2 s ) _ @ ]  

+b2e-2~d[2 -4+ad(1+2@-4J} ,  

G(ls, 2s)= l {-- l +nae-2Se[(1-516-4aZ a~d) ( l + 2 s )  + a--~-~ ] 

+b2e-2~a[( 15-22a+15a2-4a3 3 - 3 a + a 2  ad+ 2 - a  o.2d z 

a 3 d 3 1 ( 1 ) 3 - 3 a + a 2  2 - a  o-3d2 t} 
+ ~ - ]  7 + 2 a  - 3  8 ~ - o - - ~ o - 2 d - -  4 ' 
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G(2s, 2s) = - -d- -}" n3 e- 2~a + 
16 32 

�9 sd+  l-5a-aa2s2d216 - a ~ s a d 3 1 ( ~  ] - ll-19a-44a2-20a332 s 

- 1 - 5 a - 4 a 2 s 2 d + g s 3 d Z } + b 3 e - 2 " a [ ( 8 + a - 2 7 a 2 + 3 0 a 3 - 1 0 a ' 8  16 

l l + 1 9 a - 4 4 a 2 + 2 0 a 3  1 + 5a-4a2 a2d 2 a ~ a 3 d 3 ) ( ~  +2o-) 
+ 32 ad + 16 + 24 

l l + 1 9 a - 4 4 a 2 + 2 0 a a  l + 5 a - 4 a 2  8 ] }  
- o t~ 2 d - o 3 d 2 

32 8 

where x A and x B are coordinates of atoms, s, a are Slater exponents, d is the distance of the atoms in 
S - - O "  

atomic units, a = 0.5 (t + 1/t), b = 1 + a, n = 1 - a, t = s +~-a " 
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